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NORMAL COMPONENT OF INDUCED VELOCITY FOR ENTIRE FIELD OF A
UNIFORMLY LOADED LIFTING ROTOR WITH HIGHLY SWEPT WAKE AS
DETERMINED BY ELECTROMAGNETIC ANALOG!

By Wanrer Casrnes, Jr, Howarn 1.,

SUMMARY

Values of the nondimensional normal component
of induced velocity throughout the flow field of a
untformly loaded lifting rotor operating in the upper
half of the kelicopter speed range are presented in
the form of graphs and tables.  The tabulated duta
are for rectangular grids of points located in azimuth
planes situated at 30° inerements of azimuth angle.
The grids extend a distunce of J votor radii in both
the vertical and radial directions.  Values at points
in the rotor plane were computed by means of the
Biot-Savart relation wsing the assumption that the
wake-vortex distribution consisted of a uniform, semi-
anfinite, elliptic eylinder.  Values af points not in
the rolor plane were obtained  crperimentally by
measurements of the field strength about an electro-
magnetic-analog model of the wake-vorter system.

Comparisons of computed and cxperimental analoy
values for the normal component of induced velocity
both in the plane of the rotor and in the lateral plane
perpendicular to the rotor plane are presented.  The
agreement between the computed and experimental
analog values indicates that the latter are sufficiently
accurate for engineering purposes.

The results should be wuseful for estimating the
induced velocity distribution about lifting rotors in
general and for synthesizing the distributions over
the rotor disk for the case of any speeified nonwniform
loading.

INTRODUCTION

In order to determine the performance and air
load distribution of a lifting rotor, it is necessary
to know the induced flow field in the vicinity of
the rotor, the component of veloeity normal to
the plane of the rotor being of particular interest.

' Supersedes NACA Technical Note 4235 by Walter Cuastles, Jr., Howard [,

Duwnay, Jr, and Jikame KEVORKIAN

To make rotor-flow-field computations mathe-
matically tractable, it is usual to approximate the
actual wake-vortex system by one having regular
geometric propertics.  In general, however, for
even the simplest of wake geometries the caleula-
tions are tedious and prohibitively lengthy unless
high-speed  computing facilities are available.
Alternatively, there is an approach to the problem
making use of the perfect analogy between the
induced flow field associated with a vortex filament
in a perfeet fluid and the magnetie field in space
associated with a current-carrying wire.  Thus it
is possible 1o construct an eleetromagnetic analog
m the form of a wire model of a given vortex con-
figuration.  Point  measurements of magnetic-
field strength in the associated magnetie field then
afford w deseription of the analogous induced
veloeity in the fluid veloeity field, as shown in
reference 1,

The principal objective of the present paper is
to present in the form of tables and graphs the
experimental values for the nondimensional normal
component of induced velocity which were ob-
tained by means ol an electromagnetic-analog
model of the wake from a rotor operating in the
upper half of the flight speed range.  The method
employed was in many respects similar to the
procedures deseribed in references 1 and 2. Sur-
veys were made of the normal component of
induced velocity in several azimuth planes per-
pendicular to the plane of the rotor beginning with
the Tongitudinal plane of symmetry and proceeding
in 30° increments of azimuth angle.

Another objective is to supplement and extend
the results of veferences 3 and 4 by presenting

Darham, Jr., and Jirnir Kevorkian 1958
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additional computed values, obtained by neans
of a digital computer, of the normal component
of induced velocity in the rotor plane. This pro-
gram was carried out along with the magnetie-
analog measurements and afforded reliable cheek
points for comparison of results. The computed
data furnished values for the indueed veloeity at
space points loeated such that physical inter-
ference between the pickup coil and wake model
prevented field measurements and also at points
near the model eoils where the gradient of the
local magnetice field was large.

The analysis presented herein coneerns the flow
field associated with a uniformly loaded lifting
rotor and assumes that the wake-vortex system
has the form of a uniform, semi-infinite, elliptic
evlinder composed of a very large number of
circular vortex ring elements arranged in such a
way that the circalation per unit length of the
vortex sheet is constant.  This assumption implies
that the induced flow associated with the vortex
system is a potential flow and, as such, has a
perfect magnetic analogy as  pointed  out by
equations (2) and (3) of reference 1.

This investigation was conducted at the Georgia
Institute of ‘Fechnology under the sponsorship
and with the financial assistance of the National
Advisory Committee for Aeronautics.

SYMBOLS

g cocllicient of cosine term in Fourier
series Tor blade flapping angle

MR output meter veading, b

m tangent of wake angle x

P any point PN, V. Z,) in rotor flow
field

R rotor radius

R, radius of point P from Z— or votor

XIS
eylindrieal coordinates of a point on
the curve of intersection of plane

Re,Ze

y=Constaut  with  wake-vortex
evhinder

ro=R, IR

V velocity ol helicopter along {light
path

vy normal component of induced ve-
locity at P

o normal component ol induced ve-

loeity at center of rotor plane

SNATIONAL AKRONAUTICS AND SPACE ADMINISTRATION

N Y. Z coordinates of n wake-vortex sheet
clement as nieasured relative to the
tip-path-plane axes

N,V 72, coordinates of point PP in rotor flow

ficld

- 7 i

o Aoiil

a angle of attack of plane of zero
feathering

ap angle of attack of rotor plane,
a—

0 azimuth angle of wake-vortex sheet

element having length ds meas-
ured from negative .X-- or up-
wind direction

A= (V sin a,—0)/QR

o= (V 208 a,)/QR

X wake angle measured between nega-
tive Z— or rotor axis and wake
axis

¥ azimuth angle of point I’ measured
from positive X— or downwind
direction

Q ungular velocity of votor blades

Subseripts:

& curve of interseetion formed by plane
Y= Constant  with  wake-vortex
eylinder

N search-coil normalizing point  for
which computed velocity ratio was
known

r point. P

THEORETICAL ANALYSIS

Under the assumption that the wake-vortex
distribution takes the form of a uniform, semi-
infinite, elliptic eylinder, it was shown in reference
4 that the ratio of the normal compouent of in-
duced relocity at any point P to that at the center
of the otor is given by

“s ode (1)

7 I"vi 1 J. o 41—77]3 \““JZY
0 \;'(, (\“x( — [))

NS m, g, \L——Q_ﬂ'
where he wake geometry is given in figure 1 and
A=t -fr, cos (—40)

B cos 8/y14-m?
O=14-r2}2,24+2r, cos (y—8)

D (2,4 mr, cos | om cos )/ 14 m?
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Piane ,
¥ =Constant

Tip-path plane

Curve of intersection-
of plane ¥ =Constant
with cylinder; locus

of points (/?C,\U, Zc)

Fraure 1 -Geometry of wake-vortex systeni,

The wake angle x is connected with the resultant
velocity components at the center of the rotor by
the relation

X-tan—' -y, /N (2)

It was desired to compute the nondimensional
normal component of induced veloeity in the rotor
plane at points P(r, ¥) for a wake ceometry
simulating the wake from a rotor operating in the
upper half of the helicopter speed range,  Sinee
a wake angle x =tan! 10 (84.29°) closely approx-
imates the actual wake angle for a helicopter
operating in the higher speed range, the values
z,=0 and m=10 were substituted into equation (1)
which then became

'V,) 1 j.z,, .
( 10,04 2r Jo ( ®)

where I7 represents the integrand of equation (1)
after the substitutions were made in the quan-
tities A1, B, (", and 1) above.

Numerical approximations to the integral of
cquation (3) were obtained for combinations of
values of 7, and ¢ by means of a digital computer
programmed to use Simpson'’s rule with 120 equally
spaced increments in 8. Except for a few points
close to the wake boundary, this procedure

vielded results correct to within -1 in the third
decimal place as verified by check points previ-
ously computed by other methods.

EXPERIMENTAL PROCEDURE

The clectrieal systems emploved in references
1 and 2 were broadly similar in that both meluded
four basie components:

(1) The primary coil (wire model of vortex

system)

(2) The secondary coil (search coil)

(3) The electronic voltmeter

(4) The power supply
The methods consisted essentially of measuring
the voltage induced in the scarch coil by the
magnetic field of the primary-coil current and
converting the result into equivalent velocity.

In light of information gained from the reports
mentioned above, certain fixed considerations
emerge which affeet the acceuracy of the method
and must be taken into account when designing
an  cleetromagnetic-analog These 1n-
clude:

svstem.

(1) Extrancous magnetic fields
(2) Tmpure wave forms in the primary-coil
cireult
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(3) Induced effects in the primary-coil and
search-coil leads

(4) Search-coil dimensions and calibration

(5) Primary-coil field distortion
An attempt was made in the present work to
minimize inaccuracies arising from  the above
sources.  The following sections deseribe cach of
the basie components of the magnetic-analog
svstem used in this investigation.

PRIMARY FIELD COIL (WAKE MODEL

The difficulties involved in attempting to con-
struet a solid nonmagnetic eylinder in the shape of
an elliptic cylinder upon which to wind the pri-
mary coil made it expedient to build up the wake
model from a series of “lumped” coils wound on
separate Plexiglas rings. The rings were mounted
upon a heavy fiber base plate by means of indi-
vidual Plexiglas bases so arranged that the line
of conters made an angle of 84.29° (or tan~' 10)
with the rotor plane axis.  To minimize the field
distortion due to lumped coils in the vieinity of
the rotor plane, the assembly was divided into
two principal sections.  The first seetion (corre-
sponding to the upper portion of the wake) con-
sisted of 27 rings each bearing 1 turn of No. 17
onge copper wire.  The second section was com-
prised of 18 rings each bearing 9 turns of wire
and a final ring bearing two layers of 9 turns
each. The coils were connected in series in
such a manner that the input and return wires
for each coil were juxtaposed and could be twisted.
This arrangement, which for the multiturn coils
involved & double winding, was necessary in order
to minimize the external magnetic field induced by
the current in the individual coil leads. The leads
connecting the wake model to the power supply
issued from the final coil at the end of the wake
model and were also twisted. The wake coils had
a mean diameter of 12 inches between wire centers
and were so spaced that the average number of
turns per unit wake length was the same in each
soction. Tt should be noted that the position of
the rotor plane does not coincide with the plane
of the end coil but is located approximately half a
coil turn fartber up the wake axis. The relative
positioning of the coils conformed roughly to the
actual spacing of the rotor-blade tip vortices in
the wake of a three-bladed helicopter rotor oper-
ating at p.==0.3. The overall length of the assem-

bly was 12 feet. Under operating conditions the
“oquivelent vortex”” strength of the field coil was
about 4 ampere turns per inch of wake length.
The entire eoil system was mounted on a wooden
table of height and position such that the wake
model was centered in its containing room. Figure
2 is a photograph of the model assembly,

SEARCH COIlL

The nonlinearity of the primary-coil field and
the fact that point measurements were desired
made it necessary that the search-coil dimensions
he small compared with those of the wake model.
A mean diameter for the search coil amounting to
about 3 percent of that for the field coils was
adopte 1 for the work reported herein, since a coil
of such size could be built with little difficulty and
would vield indueed voltage measurements sufti-
ciently accurate for engineering purposes. The
search coil used had a diameter of about 0.35 inch
{o the conter of the wire bundle which had a eross
section in the form of a square approximately 0.09
inch on o side. The eoil consisted of 1,000 turns
of No. 40 gage copper wire wound on a Plexiglas
form. The coil form was mounted on a Plexiglas
support. A solid dielectric coaxial eable was
used to conneet the search coil to the amplifier
in ordor to minimize the cwrrent induced in this
section of the pickup cireuit.  The entire search-
coil assembly together with its coaxial connector
is shoan in figure 2. The base of the search-
coil support and also the top of the ficld-coil
supporting table were seribed with straight lines
spacec at inerements of convenient fractions of
the ro-or radius in order to facilitate positioning
of the search coil.  For surveys in the various
azimu:h planes, wooden ramps having the shape
of 30° or 60° triangles were used {o position
the sewrch-coil assembly.  Seribed lines were also
includ>d on the faces of these supports.  The
search-coil assembly is shown typically positioned
relative to the wake model in figure 2. Figure 3
shows the search coil in detail.

The necessity for obtaining a separate calibra-
tion «f the search-coil circuit was eliminated in
the work of this report by normalizing the field-
strength measurements to  those obtained  at
severs] convenient space locations in the primary-
coil feld for which the values of the induced
velocity are given in reference 4.
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Fravre 2. Magnetic-unalog model assembly simulating o wake angle of x

AMPLIFIER AND OUTPUT METER

In addition to the search coil, the pickup circuit
included a commereial standing wave indieator
having a maximum sensitivity of 0.1 microvolt for
full-scale meter deflection. The assembly con-
sisted of an indicating meter, a high-gain 400-cycle
fixed-frequency amplifier with a calibrated gain
control covering a range of 60 decibels, and a
narrow 400-cyele band-pass-filter network having
a sharp cutoff at 400 =+ 5 cyeles per second.
The integral electronically regulated internal
power supply operated on 115 volts. The input
impedance of the amplifier was 200,000 ohms and
consequently 1t was desirable to test whether
calibration factors in terms of the search-coil
current were needed for the indicator readings.
This was done by placing the search coil at various

tan~t 10 -84.29°,

points of high and low field strength and taking
meter readings with only the normal 200,000-
ohm impedance in the amplifier input cireuit.
A set of ratios of the equivalent induced veloeities
was computed from these readings. The input
impedance was then changed to approximately
5 megohms by means of a noninductive serics
resistor and the procedure was repeated. A com-
parison of the two sets of computed ratios showed
no measurable differences. It was concluded
that meter scale calibration was unnecessary.
Figure 4 shows the amplifier-indicator unit which
was located in a hallway removed from the field
coil.
POWER SUPPLY

The power supply used for the wake model

consisted of a 400-cyele aireraft inverter driven
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Frauvre 3.

by a rectifier, the output voltage of which was
stabilized by storage batteries. The inverter
was connected to the primary magnet coil through
a variable series resistor and through series capue-
itance. It was found that the frequeney stability
of the system was improved by adjusting the
capacitance so that the resonant frequeney of the
wake-model coil circuit was slightly above the
400-cycle operating frequency.  As monitoring
devices the circuit included an ammeter and an
electrically driven reed frequency meter which
had been reworked so that the frequencies in-
dicated by suceessive reeds differed by only 1
eps.  Rough frequeney control was obtained by
means of inverter taps, and final frequeney
adjustment to the desired 400 cps was made by
varying the load on the inverter through the

Details of =eareh coil

series resistor.  In order to use this frequency
contrel system it was necessary Lo unbalance
slightly the frequeney-load-compensation eircuit
in the inverter.  Figure 5 shows the power-supply
assemHOly which was located in a separate room
from those of the wake-model coil and amplifier.

FIELD-SURVEY PROCEDURE

In zeneral, the wake-model coil circuit was
allowcd to operate for about 30 minutes in order
to rearh thermal equilibrium before any attempt
was rade to take measurements.  After stable
conditions were reached, the search coil was placed
at & eonvenient normalizing point in the magnetie
field for which the induced velocity ratio was
known from the digital-computer caleulations of
reference 4 and the meter reading recorded. The
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Fravre 4,

coil was then moved to the successive survey posi-
tions and these readings recorded. The search-
coil circuit was renormalized at frequent time in-
tervals.
REDUCTION OF DATA

The meter readings recorded during the pro-
cedure desceribed in the preceding section were
converted into equivalent veloeity ratios by the
formula

\( \",‘) \:( 1'1‘) I:antil()g ().l(A\II;’)p] )
l o el \ e Jy Lantilog 0.1 R,
where 17/e 18 the nondimensional normal compo-
nent of induced velocity and P refers to the space
point at which the measurement was made.

The sign (direction) associated with the left

member of equation (4) was determined from con-
514204 60 2
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gl

L-58-8

Fixed-frequeney amplifier and indicator unit,

siderations embracing the flow-field geometry and
the trends of the experimental data being reduced.
The results, as deseribed in the next seetion, were
obtained from faired plots of the experimentally
determined induced velocity ratio V,/e plotted
against 12,/1 Tor constant values of Z,/R or, where
necessary, against Z /R at constant values of
Il),,/‘ll).
RESULTS

Tables 1(a) to 1(g) give the values of 1/
as experimentally determined over the azimuth
planes ¢=0°, 30°, 60°, 90°, 120°, 150°, and 180°.
Because of the symmetry of the flow, tables 1(b)
to 1(f) also hold for the azimuth planes ¢=:330°,
300°, 270°, 240°, and 210°, respectively. In
table 1(d) the values of 17,/¢ at points for which
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Ficure 3.

0ZR,/RZL2.8 and 2/, <2 were taken di-
rectly from the computed results obtaimed in
reference 4. The measurements given in table
I extend over a large enough region about the
rotor plane so that the velocity distributions
near a rotor with nonuniform loading may be
calculated by superposition as i reference 5.

Table 2 lists the computed values for Vi/e in the
rotor plane at azimuth angles ¢==0°, 30°, 60°,
00°, 120°, 150° and 180° extending radially 1o
six rotor radii.  Although the table contains some
duplication of wvalues previously listed, it was
thought convenient in light of poessible future
application to colleet the in-plane components
together.

Figures 6(a) to 6(d) are plots of constamn
values of 17,/r in the various azimuth planes as

Power-supply #<xembly.

interpolated from tables 1) to I{g). In par-
ticular, ficure 6(a) supplemeuts the collection of
similar plots given 1 reference 3, and figure 6(d)
extends the ranges covered by its corresponding
plot i reference 4. The dashed lines in each
figure represent the curve of mtersection formed
by the azimuth plane and the wake vortex eyl-
inder.  Points on these dashed curves are given
by the relation

Lo, L PR LIRTRVAYS B
/l,;(,()t X l: Jp €08 ¥ v 1 ( jp s 1//)] (5)

where only negative values of Zg are to be con-
sidered.

Figure 7 compares constant-value plots as ob-
tained from the computed values of table 1(d)
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04

Ro

() Lines of constant values of Ve in longitudinal plane ¢ —=0° and 180°,

Fraere 6. Lines of constant values of nondimensional normal component of induced veloeity 1/ in each 30° azimuth
plane for case of a wake angle x ~tan 110 81.29°.  Dashed lines represent curve of intersection formed by azimuth
plane and wake-vortex eylinder,
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(b)Y Lines of constunt values of Ve in azimuth planes ¢ —30° and 210° and ¢ = 150° and 330°.

Ilgure 6. Continud.
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4

Ro

() Linex of constant values of V,/r in azinnh planes ¢ 60° and 240% and - - 120° and 300°.

I'ravre 6.— Continued.

514204 —60—--3
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() Lines of constant values of 150 in lamteral plane
¢ =90° and 270°.

Frarre 6. Concluded.

with those obtained from the experimental values
in the lateral plane.  The table for these experi-
mental values has not been included sinee the
more accurate computed values were available.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Figuies 8(a) to Se) give plots of the computed
data of table 2. Experimental analog values for
the in-plane veloeity component are also indicated
in these figures for comparison purposes.

In connection with figures 7 and 8, which show
compatisons between computed and experimental
analog results, it will be noted that no gross dif-
ferences exist exeept in regions near the wake
boundi ry  wherein neither the uniform  mathe-
matical model nor the magnetic analog with its
arbitrary finite coil spacing could be expeeted to
vield realistic approximations to the true flow
field.

CONCLUDING REMARKS

Inhevent in the analog method which has been
deseril ed are sources of error such as (1) differences
in geometry between the model, with its finite
arbitrary coil spacing, and the wake-vortex system
for a particular rotor, (2) small variations in
primarv-coil current and frequeney, (3) scarch-
coil positioning errors and associated meter-reading
errors, (4) inaccuracies in the meter and amplifier
calibration, and (5) small distortion in the portion
of the nodel magnetice field of interest arising from
the lasoratory structure. It is to he expected
that e process of fairing the reduced data will
average out some of the inaccuracies due to the
above causes; however, this need not always be
the case.  Too, the fairing process itself 1s subjeet
1o varving degrees of inacceuracy depending upon
the tudividual  performing  the operation.  In
view of these facts it is difficult to give any figure
for the probable range of accuracy of the experi-
mental measurements.  However, the compari-
sons between the caleulated and analog results
indicaze that the experimental values are suf-
ficiently accurate for engineering purposes.

It is anticipated that the computed data pre-
sentec herein will be useful in synthesizing the
distribution of the normal component of induced
veloci'y over the plane of any rotor having a
specified loading by some method employing the
princible of superposition.  Also, it is expected
that the data should be useful for estimating the
interference-induced veloeities of multirotor heli-
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Ficure 7.--Lines of constant values of Ve in lateral plane obtained from computed data of table 1{d) compared with
experimental analog values.



14 TECHNICAL REPORT R 41 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

3,,

<<

-3 I |
0 2
Fo
R
() Ve in rotor plane for ¢ 0%, 90°, and 180°, b Ve in rotor plane for ¢ - 30° and 1207,

Firavre 8. -Radial distributions of computed in-plane nondimensional normal component of induced veloeity V/r at
each 309 azimuth position compared with experimental analog val es for cuse of wake angle x  tan ™t 10 81,299,
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(e) Vv in rotor plane for ¢+ 60° and 150°,

Figure 8.—Concluded.

copters and the downwash velocities at wing and
tail planes,

Inasmuch as the apparatus and techniques nsed
in the present work are subjeet to considerable
refinement, it is thought that the clectromagnetie-
analog method should be useful for mapping
induced flow fields which are mathematiceally
intractable,

Grorgra InstiTuTE OF TECHNOLOGY,
Arvanrta, Ga., February 21, 1957,
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ROTOR

LOADED LIFTING

NORMAL COMPONENT OF INDUCED VELOCITY FOR A UNIFORMLY
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NORMAL COMPONENT OF INDUCED VELOCITY FOR A UNIFORMLY LOADED LIFTING ROTOR
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A UNIFORMLY LOADED LIFTING ROTOR

NORMAL COMPONENT OF INDUCED VELOCITY FOR
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NORMAL COMPONENT OF INDUCED VELOCITY FOR A UNIFORMLY LOADED LIFTING ROTOR
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TABLE 2. -NONDIMENSIONAL VALUES OF NORMAL COMPONENT OF INDUCED VELOCITY e IN
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